

BEAMeeting Stuttgart 2024

Grayscale lithography in HSQ and the application of dose gradient shapes

Kevin Hofhuis

E-beam scientist

Paul Scherrer Institute

Blazed X-ray Diffraction Gratings

For application at Synchrotrons and XFELs in the soft and tender x-ray range ($E \approx 40$... 4000 eV)

- Monochromators
- Analyzers for inelastic scattering (RIXS)
- Self-seeding & pulse compression

Blazed profile Pitch: few microns down to 100 nm Flat or curved substrates Up to 140 mm length

$$m\lambda = k_0(\sin\alpha + \sin\beta)$$

Current fabrication methods

- Ruling
 - Blazed gratings
 - High efficiency

Sensitive to vibrations Quality of line patterns Longer time for higher line density Suppliers of high-quality gratings are very few

Availability of high quality gratings a key bottle-neck

Bigger problem in view of next generation light sources

Mechanical ruling of a blazed grating (F. Siewert et al., J. Synchrotron Rad. (2018). 25, 91)

Electron Beam Lithography - Gratings

High resolution in placement (< 1 nm)</th>Sufficient throughput (~1 cm²/hr)Flat or curved substratesBlazed or laminar structuresLength:up 140 mmPitch:few microns, down to few 100 nm

Several gratings with different pitch or blaze angle on the same substrate Enhanced flexibility => more advanced optical designs such as curved lines

- Spin coating HSQ as resist (300 nm)
- Gray scale exposure
 - Dose gradient shapes (new development for EBPG)
- Convert resist structures into blazed grating lines
 - Mask oxidation (patent pending)

PAUL SCHERRER INSTITUT

Dose gradient shape

Partial circle

Grayscale EBL and Thermal Oxidation of Silicon

Spin coating

HSQ as resist, Thickness ~300 nm

Grey tone exposure

- Exposed area is converted to $\mathrm{SiO}_{\mathrm{x}}$

Development

- NaOH based developer
- Thermal oxidation
- Dry oxidation, Different SiO_x thickness => different oxidation speed

Oxide removal

– Wet chemical oxide removal with HF => reduces the roughness

Patent pending: V.A. Guzenko, C. David: Fabrication of blazed diffractive optics by through-mask oxidation, 2019P20969WO

development

thermal oxidation

Grayscale EBL and Thermal Oxidation of Silicon

Patent pending: V.A. Guzenko, C. David: Fabrication of blazed diffractive optics by through-mask oxidation, 2019P20969WO

Fabrication results

600l/mm (P1.666 μm) Blazed angle = 1.61° Step height = 31 nm Anti-blazed angle = 4.88° 0.2 nm RMS roughness Dose: 275-2750 μC/cm2 Beam step size 20 nm

Pitch= 1.666µm blazed

AFM image of blazed EBL test structures 250 l/mm – 2000 l/mm, 0.35 nm RMS roughness

In summary

• From design

• To Grating

 To cool images (testing) EBL design

AFM profile of test grating

At Wavelength Metrology @ BESSY II Optics Beamline on gold coated grating

Gold coated test grating in the reflectometer

PAUL SCHERRER INSTITUT

- Finalizing the lithography process
 - Full size gratings
 - Curved substrates
 - VLS gratings

Sneak peak – VLS gratings

Variable line spacing

• Line density = $a_0 + a_1x + a_2x^2 + a_3x^3$

Stage position x	-60000	um
Calculate line density	742.4984	lines/mm
Patternpitch	1346.804249	nm
Rounded pattern pitch	1347	nm
Scaling of MF in X	-14532	[ppm]
Scaled pitch corrected	-0.19574604	nm
Final pitch	1346.804254	nm

Initial results

Residual in pattern pitch

< 1 Angstrom

-80000 -60000 -40000 -20000 Stage position x [um]

Acknowledgements

PAUL SCHERRER INSTITUT

X-ray Nano-optics group :

Nazanin Samadi Christian David Vitaliy Guzenko

Colleagues at HZB:

Analía Fernández Herrero Andrey Sokolov Frank Siewert

Colleagues at Raith:

Bas Ketelaars, Christiaan Zonnevylle, and the entire team

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 101004728

Thank you for your attention!

Question?

